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Abstract

The rise of social media has been accompanied by a dark side
with the ease of creating fake accounts and disseminating
misinformation through coordinated attacks. Existing meth-
ods to identify such attacks often rely on thematic similari-
ties or network-based approaches, overlooking the intricate
causal relationships that underlie coordinated actions. This
work presents an approach for detecting coordinated attacks
using Convergent Cross Mapping (CCM), a technique that
infers causality from temporal relationships between user ac-
tivity. We apply CCM to real-world data from the infamous
IRA attack on US elections, achieving F1 scores up to 75.3%
in identifying coordinated accounts. Our results demonstrate
the effectiveness of our model in uncovering causal structures
of coordinated behavior, offering a promising avenue for miti-
gating the threat of malicious campaigns on social media plat-
forms.

1 Introduction

While social media platforms have witnessed explosive
growth due to factors like peer pressure, evolving commu-
nities, and influencer culture, this increased engagement has
fueled a parallel threat: the ease of generating fake accounts
has increased the spread of misinformation and disinfor-
mation. Politically driven campaigns, seeking to manipu-
late public opinion and achieve specific goals, rely on large
numbers of coordinated accounts to amplify their messages
and maximize the impact. Existing techniques primarily fo-
cus on identifying coordinated behaviors based on thematic
similarities, overlooking the intricate causality relationships
that underlie coordinated actions. This complexity in detect-
ing true coordination represents a significant gap in current
methodologies, forming the core motivation for our work.
There have been numerous examples of coordinated at-
tacks on social media. One of the most notable instances
was the influence of Russia’s IRA on the USA presiden-
tial elections via Twitter and Facebook (Mueller, Internet
Research Agency, and States 2018). The Permanent Se-
lect Committee on Intelligence identified 3,841 coordinated
Twitter accounts and 470 Facebook pages that were affil-
iated with the IRA in 2017. In 2018, Twitter publicly re-
leased tweets and users related to this case. In 2019, the UK
general elections were influenced by coordinated users who
polarized political opinions on Twitter (Nizzoli et al. 2021).

There have been numerous attempts to identify coordi-
nation in Online Social Networks (OSNs). Some work in
this field sought to identify campaigns in social media (Lee
et al. 2011, 2012). A major limitation of their work is the
assumption that coordination is reflected in the “theme”
of messages while other aspects of behaviour are ignored.
Network-based approaches (Pacheco et al. 2021; Nizzoli
et al. 2021; Weber and Neumann 2021; Magelinski, Ng,
and Carley 2021; Hristakieva et al. 2022) tend to define co-
ordination in terms of community detection on user simi-
larity graphs. Weber and Neumann (2021) highlighted sev-
eral coordination strategies: pollution — flooding a commu-
nity with repeated content, boost — heavily reposting con-
tent to make the topic appear popular, and bully — groups
collectively harassing another individual or a community. In
contrast, Zhang, Sharma, and Liu (2021) and Sharma et al.
(2021) define coordination in terms of the synchronicity of
users over time. They try to identify coordinated users us-
ing masked self-attention (Vaswani et al. 2017) to encode
the event history, using an approach similar to the predic-
tion model for marked temporal point processes by Shchur,
Bilos, and Giinnemann (2020). Network-based and theme-
based approaches work under the assumption that the con-
tent is the governing factor of the coordinated behaviour.
The activity-based approaches work under the assumption
that active times of coordinated users are causally linked
with each other. In contrast, we consider that coordination
should be reflected in the user activity traces.

We propose to identify how influence flows within a com-
munity of users by assessing causality between pairs of users
by exploring the layered dynamics and dependencies be-
tween users. Causality offers a nuanced understanding of the
users who influence or trigger coordinated responses from
others. The idea of causality not only enhances the precision
of coordination detection, but also provides a deeper under-
standing of the mechanisms driving coordinated activities.

In order to address the problem of inferring causality be-
tween users as a basis for identifying coordination, we build
on the theory of Convergent Cross Mapping (CCM) (Sugi-
hara et al. 2012). CCM is a powerful technique that has been
used to identify causality in applicaitons such as ecology and
climatology. However, utility of CCM for inferring coordi-
nated behaviour among social media users has not been con-
sidered in the literature.



In this article, we investigate methods of identifying co-
ordination using convergent cross mapping, and evaluate the
performance of our model on real data. Our research aims to
address the following questions:

RQ1. How effective is inferring coordination using causal
structures of users?

RQ2. Can our model be optimized further for enhanced per-
formance in identifying coordinated attacks?

RQ3. What are the key limitations and challenges associ-
ated with inferring coordination using causal structures?

Our experiments on the IRA dataset (Permanent Se-
lect Committee on Intelligence 2018; Mueller, Internet Re-
search Agency, and States 2018) show that cross mapping
each pair of users can identify coordinated pairs of users ac-
curately. Moreover, the coordinated users who were iden-
tified by our model belong to clearly separated clusters of
interests. We achieve F1 scores up to 75.3%. Further, we ex-
ploit the clustered nature of users to optimize our model.

In Section 2, we provide the background and definitions
needed for our framework and then our hypothesis and the
problem statement is described. In Section 3, we describe
our methodology followed by our model. The data, exper-
iments, results, and optimizations are presented in Section
4. We further studied how to recognize leaders and uncover
hidden coordinated behaviours in the same section. Finally,
we conclude our study and identify directions for future re-
search in Section 5.

2 Background and Problem Statement

Convergent Cross Mapping. Unraveling relationships
within complex systems often leads researchers to study nu-
anced separation between correlation and causation. While
correlation signifies a statistical association between two
variables, it falls short of establishing a cause-and-effect re-
lationship. In contrast, causation implies a direct influence of
one variable on another, suggesting a deeper understanding
of the underlying mechanisms governing a system. Conver-
gent Cross Mapping (CCM) (Sugihara et al. 2012) is a pow-
erful technique that can determine causality using the varia-
tion of correlation at different training sample sizes (known
as library lengths) of predictions. CCM uses Takens’ prin-
ciple (Takens 1981) to detect if two variables belong to the
same dynamic system. Consider two time series variables X
and Y. CCM establishes the causality between variables by
examining the predictive accuracy of a cross-mapped model
built using historical Y data to reconstruct X states. Causal-
ity is suggested by the convergence of these reconstructed
states towards the actual X values.

CCM has been primarily found application in ecology
and (Sugihara et al. 2012; Clark et al. 2015; Ye et al. 2015;
Frossard, Rimet, and Perga 2018) climatology (van Nes et al.
2015; Luo et al. 2015; Zhang, Wang, and Tsonis 2018).
CCM was reviewed and provided improvements in works
of Ye et al. (2015); Krakovskd and Hanzely (2016) and Tso-
nis et al. (2018). The study in Cobey and Baskerville (2016)
explores the limitations of CCM such as its sensitivity to pe-
riodicity. We consider that there is no reason for there to be

such periodical fluctuations of activity of users in OSNs, but
only major events govern the activity of users. CCM has not
been widely studied in the context of social networks other
than the work of Luo, Zheng, and Zeng (2014). However,
their work is not geared to infer coordination using causal
relationships, but instead to confirm their results with alter-
native network measures. Thereby, we identify the gap in
literature that CCM has yet to be applied in social media
contexts to determine coordinating behaviours.

Preliminaries. We refer to an interaction made by a user
in the OSN as an event. For example, on Twitter (now called
X), a tweet authored by a user is considered an event. The
set of timestamps of events authored by a user w is called an
activity trace {to y,t1,u, ... }. If there is an influence flow
from user u; to ug, we say uy = ug. If uy = ug and ug =
u1, we say there is a bidirectional coupling. If u; = wuo but
uy # ug, we say that there exists a unidirectional coupling.
We named the directed graph where the vertices are users
and the edges are influence flows to be the influence graph
for sample of users we consider.

Let U be a set of users in an OSN. Say we determine
a time period (%, tena) that presumably contains coordi-
nated anomalous activities based on observations. Let 1" be
the set of activity traces performed by each user in U in the
above time interval.
Problem Definition. Given a dataset of activity traces T,
find pairs of users that are causally influenced unidirection-
ally or bidirectionally by measuring their prediction scores
through Convergent Cross Mapping. Find the users that be-
long to such influencing pairs and mark them as coordinat-
ing users.

3 Methodology

Motivating Example. Our results for simulated users
highlight the applicability of CCM for social media data. We
simulated two users u; and uy to model different stages of
a simple leader-follower behavioural spectrum. We assumed
that the extremes of this spectrum to be: (1) the follower can
only be activated once with a lag after the leader is active, (2)
the behaviour is random for both agents. We applied CCM to
observe cross map prediction accuracy measured with corre-
lation at different library lengths. Figures 1a, 1b, 1c, and 1d
show our simulation results. The increasing nature of corre-
lation when there is a leader-follower behaviour motivated
us to adapt CCM to analyze on real online social network
(OSN) data.

Model. Say we analyze a set of users’ (U) ac-
tivity in a time period (tsar,tend). First, we record
timestamps of events authored by each user u €
Ua T, = {tou tiut2u,-..}. Subsequently, ev-
ery T, is vectorized to a fixed size L, X, =
(Xu(1), Xu(2), Xu(3), ..., Xu(L)). Essentially, we parti-
tion the time series into bins of size I = (fet — tsn) /1. Here,
Xu(a) =t |t € Ty,(a—1)I <t < al}|. The embed-
ding function e : U x Zso — ZE, transforms each time
series into a series of lagged-coordinate embeddings. For a
lag 7 > 0 and embedding size 2 > 1, a pointin X, at time ¢
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Figure 1: Motivating example of the use of CCM to model causal behaviour in simulated social media data. We show the
variation of the correlation of predictions (vertical axis denoted p) for prediction about two simulated users u; and uy, where
ug follows uq on social media, as the library lengths L (i.e., sample periods) increase. CCM implies causation if the correlation
is increasing for increasing library lengths. : predictions for u; given us’s shadow manifold i.e., history, : predictions
for usy given uy’s shadow manifold, ------ : linear regression drawn for ;s variation of correlation, and ------ : linear regression
drawn for us’s variation of correlation. (a) uo posts after uq, who posts at regular intervals. (b) us posts after w1, who posts
at irregular intervals. (c) ug posts after u;, who posts at irregular intervals. However, us posts at random times without w4

triggering us’s behaviour. (d) vy and uo behaves randomly.

is transformed as e(u,t) = (X, (t), Xo(t —7),..., Xu(t —
(E — 1)7)). This embedding results in a manifold M, =
le(u,1),e(u,2),...,e(u, L)] for each user u. For a unique
pair of users w; and wug, M,, and M,, can be consid-
ered as two shadow manifolds for the attractor manifold of
the original behaviour system of these two users given by
My, = [(Xu, (1), X0, () | t = 1,2,..., L]. We now
cross map X, using M, and vice versa. Specifically, we
use a nearest neighbors model with £ = E' + 1. Unseen data
in a future time window is then tested with the fitted model
to obtain predictions X,,, | M., and X, | M,,, . The cross-

correlation p of each prediction X,,, | M, is compared with
ground truth X, for multiple library lengths. If p of u; is
generally increasing with the library length, and its maxi-
mum is sufficiently great (with a threshold 6), it indicates
that it is possible to estimate X,,, from X,,. Therefore, in
such case, we imply that the behaviour of u; drives us (i.e.,
u1 = us). It should also be noted that both u; = us and
ug = uj can happen at the same time. If u; = wu9, we
mark both u; and us to be suspected coordinated users. It
is possible that u4 is influenced by any other ug at different
partitions of X,,,. Even though it could hinder the variation

of p, CCM successfully recovers from it since we embed
only a part of history instead of the whole history. Specific
hyperparameters and methodologies that are used in the sub-
modules are given in Section 4.2.

Pairwise comparison. The computational expense associ-
ated with pairwise comparisons of N users can be substan-
tial (VCy = O(N?)), yet accurate. In response, we devise
an optimization strategy based on the observation of our raw
results in Section 4.4.

4 Experiments
4.1 Data

We experiment on the dataset of the activity of Russia’s In-
ternet Research Agency (IRA) influencing the 2016 USA
presidential elections (Permanent Select Committee on In-
telligence 2018; Mueller, Internet Research Agency, and
States 2018), which consists of confirmed coordinated ac-
tivities. This is a widely used dataset for detecting coordina-
tion (Weber and Neumann 2021; Sharma et al. 2021; Zhang,
Sharma, and Liu 2021; Weber and Falzon 2022) due to the
availability of ground truth. The dataset consists of 8.76 mil-
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Figure 2: Stacked distribution of IRA activities and extracted
noise tweets across time. The bin size for the x-axis is 1
million seconds (~11.6 days). The red vertical line shows
the election date.

lion tweets posted by 3613 users. The dataset originally con-
sisted of the following fields; Tweet id, User id, User display
name, User screen name, User reported location, User pro-
file description, User profile url, Follower count, Following
count, Account creation date, Account language, Tweet lan-
guage, Tweet text, Tweet time, Tweet client name, Replied
tweet id, Replied user id, Quoted tweet id, Whether the tweet
is a retweet, Retweeted user id, Retweeted tweet id, Lati-
tude where the tweet is posted, Longitude where the tweet
is posted, Quote count, Reply count, Like count, Retweet
count, List of hashtags, List of urls, List of user mentions,
List of poll choices if the tweet includes a poll. Figure 2
shows the distribution of activity across the time.

In order to test the effectiveness of a coordination detec-
tion model, we introduce a set of noisy background events to
the IRA dataset, since the IRA dataset only contains the set
of coordinating users. For that purpose, we scraped Twitter
data for that period of time which includes the same pop-
ular hashtags in the IRA dataset using the Twitter API v2
for academics. The criteria that were used to extract data
were: posted time between 2008 and 2018, marked loca-
tion anywhere in the USA, contains either one of the follow-
ing hashtags - Election2016, MAGA, MakeAmericaGreatA-
gain, AmericaFirst, DonaldTrump, WakeUpUSA, Trump,
TrumpTrain, HilaryClinton, Trump2016, DrainTheSwamp,
TrumpPencel6, tcot, POTUS, GOP, Resist, UniteBlue, Nev-
erHillary, ElizabethWarren, WeThePeople, IllegalAliens,
TrumpRussia, ImWithHer, GayHillary, WakeUpAmerica.
The above set of hashtags were the top-occurring hashtags in
the original IRA dataset to ensure that the noise data belongs
to the same ongoing discussions at that period of time. The
background data of normal users consists of 2.80 million
tweets from 333,000 of users. The distribution of coordinat-
ing tweets and the noisy tweets are shown in Figure 2. High
activity is apparent near the election time period (November
2016).

4.2 Experimental Setup

Parameters. We found that a bin size  of 60 minutes and
a lag 7 of minimum value 1, and an embedding size E' as
10 to be parameter values that yield the best results. The
threshold # was chosen as 0.5. We split the time trace vectors
into 3:1 ratio for train, test datasets.

Time Intervals. The time period (tsur, tend) Was chosen
such that it includes the election time period (November
2016) with the assumption that the coordinated activity was
at a maximum during that period of time. Thus, ts,x Was
chosen as July 2016 and t.,g was chosen as November 2016.

Extracting Top Users. For the tests to be fair, we mix the
top N¢o number of known coordinating users and top Ny
number of known normal users from the above IRA dataset.
The users for tests were selected based on the frequency of
activities in the testing time period in order to ensure we
have enough data to cross map each and every user.

Submodules To measure correlation p, we use Pearson’s
correlation method. In order to measure the general increase
in correlation values for multiple library lengths, a straight-
forward linear regression was conducted, and the resulting
gradient was used to assert the growth.

4.3 Results

Following is a report of our results for No = 200 and Ny =
200. Out of 4°°Cy number of user pairs checked, 2404 pairs
were identified as coordinating pairs. Out of such pairs,

* 2319 (96.5%) were known coordinating — coordinating
pairs.

* 63 (2.6%) were known coordinating — normal pairs.
* 22 (0.9%) were known normal — normal pairs.

Since we mark each user who belongs to at least one u; =
w9 pair as coordinating, our model detected 165 users as co-
ordinating. For that case, the precision is 80.0% and recall is
72.0% for detecting a coordinated user out of a mix of users.
The model took 642 minutes to train and predict on an M1
MacBook. Refer to Table 2 for other dataset sizes.

Figure 3a displays a graph we constructed using ver-
tices as users and edges as influence flows identified by our
model. It is apparent that there are four visible clusters of
tightly coupled users for this sample. Figure 3b and 3c are
described in the following subsections. There, we demon-
strate how we exploited the clustered nature of users to op-
timize our model.

4.4 Optimizations

Motivation. In order to formally identify sub-
communities in the graph in Figure 3a, we performed
community detection (Blondel et al. 2008) on our results.
The community detection algorithm could detect 5 main
sub-communities. The colored sub-communities are shown
in Figure 3b.

In a perfect scenario, say we could detect n equal sized
clusters in a set of users U of size N. If we only compare
user pairs within the clusters, our search space is reduced
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Figure 3: Graph of influences between users No = 200, Ny = 200. Each edge represents an edge identified by CCM. The
edge color is simply an average color between the vertices. (a) Pink vertices are known coordinating users. Green vertices are
known normal users. (b) Vertex color represents the community identified (Blondel et al. 2008). (c) Vertex color represents the
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This is a huge increase in performance in the best case.
A suitably engineered clustering technique could achieve
nearly equal clusters and hence can achieve this much per-
formance increase in terms of computational time to our
model.

We experimented with different clustering techniques,
and compared those results with the sub-communities iden-
tified above as the baseline. For a comparison metric, Ad-
justed Rand Score (Steinley 2004) was used. Since we de-
tected 5 sub-communities using community detection for the
above sample, for comparison, we used n = 5 as the number
of components (clusters) for each clustering method, since
we observed 4 large visible clusters and a small cluster at
the top of the graph in Figure 3b. Table 1 shows that NMF
(Non-negative Matrix Factorization) topic modelling yields
the best results out of the tested methods.

Topic modelling. NMF (Févotte and Idier 2011) is a ma-
trix factorization technique that decomposes a non-negative
W x H sized matrix into two matrices of size W x n and
n x H as a product. n is a significantly smaller number than
W and H. Due to the clustering property of NMF, semanti-
cally related terms are automatically grouped, forming dis-
tinct topics. In order to perform NMF, a document term ma-
trix is constructed while TF-IDF weight adjustment is ap-
plied to the dataset to ensure term importance. Given an n,

— Trump vs. Hillary, ® — News, ® — Democratic Party,

Table 1: Comparing different clustering techniques with the
identified communities.

Method Adjusted Rand Score
Baseline (Communities) 1

NMF 0.38
K-Means 0.09
DBSCAN 0.11
OPTICS 0.12

Feature Agglomeration 0.21

NMF decomposes this matrix into two matrices: (1) Doc-
ument term matrix (W x n) - Each row represents a doc-
ument, and each column represents a topic, indicating the
document’s distribution over topics. (2) Term-topic matrix
(n x H) - Each row represents a topic, and each column rep-
resents a term, indicating the importance of each term within
each topic. The challenge here is to find the least number
of topics that partitions the dataset into semantically differ-
ent subsets. Practically, maximizing the Average Silhouette
Score (Rousseeuw 1987) can be recommended to determine
the number of clusters n.

Observations and Optimization Methodology. Each
tweet was treated as a document. Both English and Russian
stop-words were removed and the documents were vector-
ized using TF-IDF vectorization. Then, NMF was applied to
the matrix constructed by concatenating the TF-IDF vectors.
For the following samples, the number of topics was chosen
as 5 to run NMF due to the observations made in Figure 3b.
To derive the cluster of each of user they belongs to, each
tweet of a user is concatenated into a single document. Then,
the trained NMF was used to predict the topic to which that



Figure 4: Graph of influences between users No = 200, Ny = 200. Each edge represents an edge identified by CCM after
isolating user groups by topics. The edge color is simply an average color between the vertices. (a) Pink vertices are known
coordinating users. Green vertices are known normal users. (b) Vertex color represents the topic of discussions of each user.

— News, ® — General, ® — Democratic Party.
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Figure 5: Graph of influences between users No = 400, Ny = 400. Each edge represents an edge identified by CCM after
isolating user groups by topics. The edge color is simply an average color between the vertices. (a) Pink vertices are known
coordinating users. Green vertices are known normal users. (b) Vertex color represents the topic of discussions of each user. ®

— General, ® — Politics, ® — News.

long document belongs. The percentage shows the propor-
tion of the number of people who belong to each topic out
of everyone who was tested. The following are the top words
that appeared in topics along with our own interpretation of
the topic in a single word/phrase.

* need, make, think, life, want, know, people, just, like, don
— General (44.2%)

* campaign, debate, cnn, says, vote, politics, donald, clin-
ton, hillary, trump — Trump vs. Hillary (33.9%)

« killed, new, state, cbs, man, says, kansas, police, world,
news — News (15.8%)

e far, muslim, isis, president, american, hillary, america,
usa, obama, tcot — Democratic Party (5.5%)

* 11, let, heart, oh, fall, hate, song, true, life, love — Emo-
tions (0.6%)

Figure 3c shows a graph of the users colored by the topic
they are associated with. It is apparent that some topics
clearly overlap with the clusters we identified using com-
munity detection in Figure 3b.

For NMF to be used as an optimization step, we cluster
users using the topic. Then, we do pairwise cross mapping
for each user pair inside the cluster. We evaluated the per-
formance of our CCM model while exploring the impact of



Table 2: Comparing original results and results with topic clustering including runtimes in minutes. CC — the number of known
coordinating - coordinating pairs detected by the model, CN — the number of known coordinating - normal pairs detected by

the model, and NN — the number of normal - normal pairs detected by the model.

Dataset Method Runtime CC CN NN Precision Recall FI1 Score
e e B W 0 s ob e
No<200.Nx =200 COMinvE 13 IIs 12 7 S14%  eh0d  753%
No—100.Nx =400 CovtonvE  5m 4o 13 119 698% 984 S81%

incorporating NMF on accuracy and runtime for different
sizes of datasets. Table 2 summarizes the results.

CCM combined with NMF demonstrated higher precision
than CCM alone, identifying a greater proportion of true co-
ordinating pairs among those detected. Recall remained rel-
atively consistent across both methods due to the reduction
in search space, suggesting similar abilities to detect exist-
ing coordinated pairs. CCM + NMF consistently exhibited
faster runtimes compared to CCM alone. This suggests that
topic clustering can significantly improve efficiency without
compromising accuracy. CCM + NMF results in lower pre-
cision and recall for the No = 400, Ny = 400 case. This
highlights potential scalability challenges for CCM.

Figure 4 shows the derived influence graphs with this op-
timization for No = 200 and Ny = 200. Figure 5 shows
results for No = 400 and Ny = 400.

4.5 Baseline comparisons
We choose the following baselines to compare our results.

1. LCN + HCC (Weber and Neumann 2021). This approach
aims to identify coordinated communities using commu-
nity detection on user similarity graphs. The temporal as-
pect is considered by a windowing mechanism. We set
the window length parameter to 10 days.

2. Tweet language. Since most (82%) of the data in the co-
ordinated set of users are in Russian and most (93%) of
the data in the noise data are in English, we compare our
results with the results of a naive model that only uses
the language to determine the coordination status. This
model simply classifies a user to be coordinated if the
language is Russian.

3. AMDN-HAGE. (Sharma et al. 2021) This is the SOTA for
identifying coordinated users. We use the same set of hy-
perparameters except the threshold to determine the out-
put influence values. Instead, we maximize the F1 score
to determine it.

CCM achieved the highest precision, indicating a superior
ability to accurately identify true coordinating pairs among
those detected. This suggests CCM’s effectiveness in mini-
mizing false positives, a crucial aspect of coordinated user
detection. AMDN-HAGE exhibited the highest recall, sug-
gesting its strength in detecting the majority of existing co-
ordinating users. However, its relatively low precision indi-

cates a higher propensity for false positives, perhaps due to
the limited timeframe of the dataset. CCM + NMF achieved
the highest F1 scores for datasets with 200 and 400 users,
demonstrating a favorable balance between precision and
recall. This highlights its potential to provide more compre-
hensive and accurate coordination detection compared to the
other baselines. However, its performance for 800 users was
lower compared to LCN + HCC, indicating potential room
for further optimization.

4.6 Leader-follower behaviour

Recall that influence is a directional relationship between
users. A leader on an OSN could be someone who originates
content or significantly contributes to the spread of content,
ideas or trends in the network. Such leaders can be identi-
fied by examining how often they are retweeted/mentioned,
having high degree centrality in the influence graph. On the
other hand, a follower is someone who consumes or ampli-
fies the content of leaders. Vertices whose indegree is high
but outdegree is relatively low in the influence graph could
be a user with a follower personality.

Define net-degree to be the difference between the
outdegree(deg™ (v)) and indegree(deg™ (v)) i.e., ndeg(v) =
deg™ (v) — deg™ (v). We inspected the influence graphs and
checked the users who have the top net-degrees. To verify
our results, for each user in the sample, we listed the num-
ber of times they were retweeted and the number of times
they were mentioned. We recorded the percentile they be-
long in both categories. Table 4 demonstrates our results.
The following are the user display names associated with
the top users and some details about them (Russian names
are translated to English).

* u1: Open Russia — Open Russia constitutes a political
organization established by the exiled Russian business-
man Mikhail Khodorkovsky (Mikhail Khodorkovsky
2014).

¢ us: John Betts — Retired CFO, Patriot, Conservative Con-
stitutionalist, 2nd Amd Supporter, Penn State Grad - Po-
litical Science (according to their profile description on
Twitter).

* us: Ramzan Kadyrov — A Russian politician, currently
the head of the Chechen Republic

¢ uy: Moscow Bulletin — A bulletin service



Table 3: Results for detecting coordinated users using different methods. N¢ - number of coordinating users in the dataset, Ny

- number of normal users in the dataset.

Method Ne = 100, Ny = 100

Ne = 200, Ny = 200

N¢ = 400, Ny = 400

Precision  Recall

F1 Score Precision Recall F1 Score Precision Recall F1 Score

Tweet language  64.0% 80.0% 71.1% 66.0%

81.0%  72.7% 66.0%  75.0%  70.2%

LCN + HCC 76.1% 63.0% 68.9% 773%  65.0%  70.6% 81.5% 704%  75.5%
AMDN-HAGE 50.0%  98.0%  66.2% 50.4% 100 % 67.0% 50.6% 100% 67.2%
CCM 87.3% 62.0% 72.5% 80.0%  66.0%  72.0% 66.1%  522%  58.4%

CCM + NMF 91.0% 61.0% 73.1% 91.4%

64.0%  75.3% 70.1%  493%  57.9%
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Figure 6: Results at different times for the same set of users.
This indicates that the IRA Twitter attackers were perform-
ing coordinated attacks even before 2016 US elections.

¢ us: Bulletin of Novosibirsk — A bulletin service

According to the above information, the influence graph
combined with net-degree sorting was able to pick impor-
tant users without prior knowledge of the content they post,
thus supporting the reliability and effectiveness of the CCM
methodology.

4.7 Uncovering coordinated behaviours

We applied our model to the same set of users but to different
periods of time. Interestingly, we get better results between
November 2014 to July 2015 (See Figure 6) compared to
2016 election times, which indicates higher coordination at
that time. Upon inspection, we could observe that almost
all the discussions were in Russian and they are related to
mostly Russian and Ukrainian politics. There existed minor
discussions related to US politics as well. Our results show
that the IRA has been politically influencing different parts
of the world even before 2016 US Elections even though the
dataset was released due to their anomalous activity in 2016.
The following are the top words translated from Russian to
English that appeared in the identified topics in relevant time
periods.

¢ 4 months since November 2014

— politics, Vladimir, news, sanctions, rf, anti-sanctions,
stoptank, Putin, Russia, EU

— will happen, prodigal, politics, Kiev tell the truth, de-
feat, plan, provocation of Kiev, Poroshenko, news,

Ukraine

— next, situation, difference, interesting, battle of oli-
garchs, happening, provocation of Kiev, Kiev tell the
truth, Kievsbilboing, Ukraine

— politics, world, read, interesting, retweet against
Obama, Obama, politics, Obama, American plague,
usa

— read, ready, looks like, interesting, battle of the oli-
garchs, provocation of Kiev, Kievsbilboing, Kiev tell
the truth, gas sector, Ukraine

¢ 4 months since March 2015

— EU, battle of the oligarchs, putin, alien, worthy, tf,
quot, opinion, ukraine, news

— sanctions, rf, politics, politics, read, interesting,
Obama, Ukraine, return California, USA

— foreign ministry, Poroshenko, sanctions, politics, com-
ing, Klimkin, not easy, negotiations, Ukraine, Russia

— zelenskyrun, god, national, idea, Russia, Russians,
read, written, interesting, Russian spirit

5 Conclusion

In this work, we proposed an approach to identify causally
linked coordinating user pairs by employing convergent
cross mapping of their activity traces. We consider a coor-
dinated community as a dynamic system of variables devoid
of external influences. The clustered nature of the influence
graphs motivated us to pre-cluster users as a preliminary step
before applying CCM, thereby reducing the overall search
space. In conclusion, CCM demonstrates competitive per-
formance in detecting coordinated users on Twitter, particu-
larly excelling in precision. Its ability to identify causal rela-
tionships between users’ activities offers a unique advantage
over traditional content-based or network-based methods.
For future work, computation can be parallelized for bet-
ter runtimes since pairwise comparisons of users are inde-
pendent of each other. An important direction for future re-
search could be to study how the influence graphs are evolve
over time, and how the influence of important nodes in the
graph is reflected on the users who follow them over the
time. Future research should also explore strategies to en-
hance recall and scalability for large-scale applications.



Table 4: Users with top net-degree in the derived influence graph without optimizations. The number of tweets, retweets and
mentions are calculated within the sample time window of 4 months from July 2016 with N = 200, Ny = 200. User-ids are
hidden due to Twitter terms of service.

User IRA user? Number of tweets Net-degree Retweets (Percentile) Mentions (Percentile)
(Indegree,
Outdegree)

Uuq Yes 788 14 (8, 22) 34 (94.8%) 36 (93.8%)

Ug No 6729 8 (20, 28) 88 (95.8%) 112 (96.5%)

us Yes 1061 7 (14, 21) 89 (96.0%) 91 (95.5%)

Uy Yes 1257 6 (19, 25) 3 (75.1%) 5 (74.5%)

Uus Yes 891 5(14, 19) 6 (81.3%) 6 (77.2%)
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